Nonlinear LBO Crystal

infrarotoptik cvd zns fenster für volle bandbreite von 0,4-12 um

zns wird durch chemisches Aufdampfen (cvd) für Fenster, Kuppeln und Linsen für Wärmebildsysteme hergestellt.

Anfrage jetzt
Produkte Details

CVD ZnS, das orange erscheint, arbeitet hauptsächlich im Ferninfrarotbereich. ZnS (M-ZnS) zeigt hervorragende optische Eigenschaften über die gesamte Bandbreite von 0,4 bis 12 µm und kann in den Bereichen Fern-, Mittel-, Nahinfrarot- und sichtbarer Bereiche verwendet werden. CVD-ZnS-Fenster, -Linsen und -Dome mit einer Größe von bis zu Ø250 × 16 mm. Für M-ZnS beträgt die maximale Größe 300 × 200 × 15 mm.


Physisch und Op tical Pr Möglichkeiten:

Wachsende Methode
Chemische Dampfabscheidung (CVD)
Schmelzpunkt
1700
Übertragungsband
3-12 μm
Massenabsorptionskoeffizient
& lt; 0,24 cm & ndash; 1 10,6 & mgr; m
Dichte
4,08 g / cm3
Brechungsindex
2.200 bei 10,6 um
Mohs Härte
3
Elastizitätsmodul
74,5 GPa
Wärmeleitfähigkeit
0,167 W / cm / ℃ @ 20
Spezifische Wärme
0,112 cal / g / l
Wärmeausdehnung
7,85 · 10 & supmin; & sup6; / ℃ bei 20

S Peci ficat Ionen:
Material:
ZnS
Maßtoleranz:
+ 0,0 / -0,1 mm
Dickentoleranz:
± 0,1 mm
Oberflächenqualität:
60/40
Clear Aperture:
& gt; 85%
Ebenheit:
λ / 2 @ 633 nm
Parallelität:
3'


verwandte Anwendungen
FZ-Wachstumsspiegel aus Silizium Infrarotreflektoren und Fenstermaterial Silizium (si)
Infrarotreflektoren und Fenstermaterial Silizium (si)
Silizium (si) wird durch Czochralski-Ziehtechniken (cz) gezüchtet und enthält etwas Sauerstoff, der eine Absorptionsbande bei 9 Mikrometern verursacht. Um dies zu vermeiden, kann das Material im Float-Zone-Verfahren (FZ) hergestellt werden.
Weiterlesen
ir Material ge Fenster für Hochleistungs-Infrarot-Imaging-Systeme Germanium
für Hochleistungs-Infrarot-Imaging-Systeme Germanium
Germanium (ge) ist das bevorzugte Linsen- und Fenstermaterial für Hochleistungsinfrarotabbildungssysteme im Wellenlängenbereich von 8–12 μm.
Weiterlesen
Zinkselenidfenster Infrarotanwendungen znse für IR-Laser
Infrarotanwendungen znse für IR-Laser
Znse (Zinkselenid) ist das beliebteste Material für Infrarotanwendungen. es kann von 0,6 μm bis 20 μm übertragen.
Weiterlesen
Saphir überlegenes Infrarot-Material Saphir
überlegenes Infrarot-Material Saphir
Saphir ist ein hervorragendes optisches Material mit hervorragenden optischen, chemischen und physikalischen Eigenschaften.
Weiterlesen
Pentaprismen Aluminium beschichtete Pentaprismen
Aluminium beschichtete Pentaprismen
Pentaprisma ist ein fünfseitiges Prisma, das zwei reflektierende Flächen in einem Winkel von 45 ° zueinander und zwei brechende Flächen senkrecht zu den eintretenden und austretenden Strahlen enthält. Die Standardreflexionsoberflächen des Pentaprismas sind mit Aluminium oder verstärktem Aluminium beschichtet.
Weiterlesen
TGG Kristall TGG Kristall
TGG Kristall
tgg ist ein ausgezeichneter magnetooptischer Kristall, der in verschiedenen Faraday-Vorrichtungen (Polarisator und Isolator) im Bereich von 400 nm bis 1100 nm, ausgenommen 475 bis 500 nm, verwendet wird.
Weiterlesen
Meniskuslinsen Hochpräzise positive Meniskuslinsen
Hochpräzise positive Meniskuslinsen
Positive Meniskuslinsen können verwendet werden, um die numerische Apertur einer Positivlinsenanordnung zu erhöhen, ohne dass die Aberrationen übermäßig erhöht werden.
Weiterlesen
Eckwürfel Retroreflektoroptik Eckwürfel
Retroreflektoroptik Eckwürfel
Der Retroreflektor des Eckenwürfels hat drei zueinander senkrechte Flächen und eine Hypotenusenfläche.
Weiterlesen
Waveplate
Waveplate
Waveplates (retardation plates or phase shifters) are made from materials which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine. In the case of an incident linearly polarized beam this is given by a=2pi*d(ne-no)/l (a-phase difference; d-thickness of waveplate; ne,no-refractive indices of extraordinary and ordinary rays respectively; l-wavelength). At any specific wavelength the phase difference is governed by the thickness of the retarder. Transmission range:330nm-2100nm Thermal Expansion Coefficient:7.5x10-6/K .Density:2.51g/cm3  Half Waveplate The thickness of a half waveplate is such that the phase difference is l/2-wavelength (true-zero order) or some multiple of l/2-wavelength (multiple order).  A linearly polarized beam incident on a half waveplate emerges as a linearly polarized beam but rotates such that its angle to the optical axis is twice that of the incident beam. Therefore, half waveplates can be used as continuously adjustable polarization rotators. Half waveplates are used in rotating the plane of polarization, electro-optic modulation and as a variable ratio beamsplitter when used in conjunction with a polarization cube. Quarter Waveplate The thickness of the quarter waveplate is such that the phase difference is l/4 wavelength (true-zero order) or some multiple of l/4 wavelength (multiple order). If the angle q (between the electric field vector of the incident linearly polarized beam and the retarder principal plane) of the quarter waveplate is 45, the emergent beam is circularly polarized. When a quarter waveplate is double passed, i.e. by mirror reflection, it acts as a half waveplate and rotates the plane of polarization to a certain angle. Quarter waveplates are used in creating circular polarization from linear or linear polarization from circular, ellipsometry, optical pumping, suppressing unwanted reflection and optical isolation. Optically Contacted Zero-Order Waveplate   • Optically Contacted • Thickness 1.5~2mm • Double Retardation Plates • Broad Spectral Bandwidth • Wide Temp. bandwidth Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/300 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Cemented Zero-Order Waveplate Cemented by Epoxy Better Temperature Bandwidth Wide Wavelength Bandwidth AR Coated, R<0.2% Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 266nm, 355nm, 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Air Spaced Zero-Order Waveplate Double Retardation Plates AR Coated,R<0.2% and Mounted High Damage Threshold Better Temperature Bandwidth Wide Wavelength Bandwidth Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/300 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 266nm, 355nm, 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Single Plate Ture Zero-order Waveplate 1.Broad Spectral Bandwidth 2.Wide Temperature .Bandwidth 3.Wide Angle Bandwidth 4.High Damage Threshold Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 1310nm, 1550nm   Cemented Ture Zero-Order Waveplate Cemented by Epoxy Wide Angle Acceptance Better Temperature Bandwidth Wide Wavelength Bandwidth   Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Cemented Achromatic: Achromatic waveplate is similar to Zero-order waveplate except that the two plates are made from different materials, such as crystal quartz and magnesium fluoride. Since the dispersion of the birefringence can be different for the two materials, it is possible to specify the retardation values at a wavelength range. Material: Optical grade Crystal Quartz and MgF2 Dimension Tolerance: +0.0, -0.2mm Wavefront Distortion: < l/ 8@633nm Retardation Tolerance: <l/ 100 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavele...
Weiterlesen
Ycob Kristall ycob crystal (yca4o (bo3) 3)
ycob crystal (yca4o (bo3) 3)
yca4o (bo3) 3 (ycob) -Kristall hat hervorragende nichtlineare optische Eigenschaften, piezoelektrische Eigenschaften bei hohen Temperaturen und eine gute chemische Stabilität
Weiterlesen
Laser Host Nd: Yvo4 Kristall nd: Yvo4-Kristall
nd: Yvo4-Kristall
Yttrium Vanadate (nd: yvo4) ist einer der effizientesten Laser-Wirtskristalle, der derzeit für diodenlasergepumpte Festkörperlaser existiert.
Weiterlesen
cr4: yag Kristall cr4: yag Kristall
cr4: yag Kristall
Aus Gründen der Einfachheit wird eine passive Güteschaltung bevorzugt Herstellung und Betrieb, niedrige Kosten und verringerte Systemgröße und -gewicht. cr4 +: yag ist ein ausgezeichneter Kristall zum passiven Q-Schalten von Dioden, gepumpt oder lampengepumpt nd: yag, nd: ylf, yb: yag oder andere nd- und yb-dotierte Laser mit einer Wellenlänge von 1,0 bis 1.2um.
Weiterlesen
eine Nachricht schicken
Wenn Sie Fragen oder Anregungen haben, senden Sie uns bitte eine Nachricht, wir werden Ihnen so schnell wie möglich antworten!
Get In Touch
  • Tel : +86-591-22857792
  • Email : sales@100optics.com
  • Hinzufügen : 3th Floor, Building 1, No 39 Jinlin Road, Cangshan District, Fuzhou Fujian,P.R.China.
Nachricht hinterlassen Willkommen bei Hunderts Optics
Wenn Sie Fragen oder Anregungen haben, senden Sie uns bitte eine Nachricht, wir werden Ihnen so schnell wie möglich antworten!

Zuhause

Produkte

Nachrichten

Kontakt