Nonlinear LBO Crystal

Retroreflektoroptik Eckwürfel

Der Retroreflektor des Eckenwürfels hat drei zueinander senkrechte Flächen und eine Hypotenusenfläche.

Anfrage jetzt
Produkte Details

In Corner Cube wird durch die Hypotenuse einfallendes Licht von jeder der drei Flächen reflektiert und tritt durch die Hypotenusenfläche parallel zur Ausrichtung des einfallenden Strahls aus.


Spezifikationen:

Material:
BK7 Glas
Maßtoleranz:
+ 0,0 / -0,2 mm
Abweichung:
180 ° ± 3 Bogensekunde
Ebenheit:
λ / 4 auf großer Fläche, λ / 10 auf anderen Oberflächen
Clear Aperture:
& gt; 80%
Oberflächenqualität:
60/40 (allgemein), 10/5 (hohe Präzision)
Fase:
0,1-0,5
Beschichtung:
Unbeschichtet, HR oder gemäß den Anforderungen


verwandte Anwendungen
rechtwinkliges Prisma rechtwinkliges Prisma als Spiegel und Retroreflektor
rechtwinkliges Prisma als Spiegel und Retroreflektor
Das rechtwinklige Prisma wird als Spiegel verwendet, um das Licht um 90 Grad abzulenken, und auch als Retroreflektor, der das Licht durch Totalreflexion um 180 Grad ablenkt.
Weiterlesen
Pentaprismen Aluminium beschichtete Pentaprismen
Aluminium beschichtete Pentaprismen
Pentaprisma ist ein fünfseitiges Prisma, das zwei reflektierende Flächen in einem Winkel von 45 ° zueinander und zwei brechende Flächen senkrecht zu den eintretenden und austretenden Strahlen enthält. Die Standardreflexionsoberflächen des Pentaprismas sind mit Aluminium oder verstärktem Aluminium beschichtet.
Weiterlesen
Glan Laser Polarisator für Hochleistungs-Laser-Glan-Laserpolarisatoren
für Hochleistungs-Laser-Glan-Laserpolarisatoren
Der Glan-Laser-Polarisator wurde speziell für Hochenergie-Laser entwickelt. Es besteht aus zwei Prismen mit gleichem Doppelbrechungsmaterial, die mit einem Luftraum zusammengebaut sind. Der Polarisator mit zwei Fluchtfenstern lässt den zurückgeworfenen Strahl aus dem Polarisator austreten, wodurch er für Hochleistungslaser geeignet ist.
Weiterlesen
TGG Kristall TGG Kristall
TGG Kristall
tgg ist ein ausgezeichneter magnetooptischer Kristall, der in verschiedenen Faraday-Vorrichtungen (Polarisator und Isolator) im Bereich von 400 nm bis 1100 nm, ausgenommen 475 bis 500 nm, verwendet wird.
Weiterlesen
FZ-Wachstumsspiegel aus Silizium Infrarotreflektoren und Fenstermaterial Silizium (si)
Infrarotreflektoren und Fenstermaterial Silizium (si)
Silizium (si) wird durch Czochralski-Ziehtechniken (cz) gezüchtet und enthält etwas Sauerstoff, der eine Absorptionsbande bei 9 Mikrometern verursacht. Um dies zu vermeiden, kann das Material im Float-Zone-Verfahren (FZ) hergestellt werden.
Weiterlesen
Saphir überlegenes Infrarot-Material Saphir
überlegenes Infrarot-Material Saphir
Saphir ist ein hervorragendes optisches Material mit hervorragenden optischen, chemischen und physikalischen Eigenschaften.
Weiterlesen
Quarzglasfenster Kundenspezifische Photonik-Quarzglasfenster
Kundenspezifische Photonik-Quarzglasfenster
Das Quarzglasfenster wird aus dem Quarzglasmaterial hergestellt. Quarzglas ist ein hervorragendes optisches Material, das hervorragende optische, chemische und physikalische Eigenschaften besitzt, die durch chemische Kombination von Silizium und Sauerstoff entstehen.
Weiterlesen
nd: Yag-Kristalle nd: Yag-Kristall
nd: Yag-Kristall
Nd: YAG (Neodym-dotiertes Yttrium-Aluminium-Granat; Nd: Y3Al5O12) ist ein Kristall, der als Lasermedium für Festkörperlaser verwendet wird. Der dreifach ionisierte Neodym-Dotierstoff ersetzt typischerweise Yttrium in der Kristallstruktur des Yttrium-Aluminium-Granats (YAG), da sie eine ähnliche Größe haben. Im Allgemeinen ist der kristalline Wirt mit etwa 1% Neodym in Atomprozent dotiert. Anwendungen: Nd: YAG absorbiert hauptsächlich in den Banden zwischen 730–760 nm und 790–820 nm. Bei niedrigen Stromdichten haben Krypton-Blitzlampen eine höhere Leistung in diesen Banden als die üblicheren Xenon-Lampen, die bei etwa 900 nm mehr Licht erzeugen. Erstere sind daher zum Pumpen von Nd: YAG-Lasern effizienter.
Weiterlesen
Waveplate
Waveplate
Waveplates (retardation plates or phase shifters) are made from materials which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine. In the case of an incident linearly polarized beam this is given by a=2pi*d(ne-no)/l (a-phase difference; d-thickness of waveplate; ne,no-refractive indices of extraordinary and ordinary rays respectively; l-wavelength). At any specific wavelength the phase difference is governed by the thickness of the retarder. Transmission range:330nm-2100nm Thermal Expansion Coefficient:7.5x10-6/K .Density:2.51g/cm3  Half Waveplate The thickness of a half waveplate is such that the phase difference is l/2-wavelength (true-zero order) or some multiple of l/2-wavelength (multiple order).  A linearly polarized beam incident on a half waveplate emerges as a linearly polarized beam but rotates such that its angle to the optical axis is twice that of the incident beam. Therefore, half waveplates can be used as continuously adjustable polarization rotators. Half waveplates are used in rotating the plane of polarization, electro-optic modulation and as a variable ratio beamsplitter when used in conjunction with a polarization cube. Quarter Waveplate The thickness of the quarter waveplate is such that the phase difference is l/4 wavelength (true-zero order) or some multiple of l/4 wavelength (multiple order). If the angle q (between the electric field vector of the incident linearly polarized beam and the retarder principal plane) of the quarter waveplate is 45, the emergent beam is circularly polarized. When a quarter waveplate is double passed, i.e. by mirror reflection, it acts as a half waveplate and rotates the plane of polarization to a certain angle. Quarter waveplates are used in creating circular polarization from linear or linear polarization from circular, ellipsometry, optical pumping, suppressing unwanted reflection and optical isolation. Optically Contacted Zero-Order Waveplate   • Optically Contacted • Thickness 1.5~2mm • Double Retardation Plates • Broad Spectral Bandwidth • Wide Temp. bandwidth Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/300 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Cemented Zero-Order Waveplate Cemented by Epoxy Better Temperature Bandwidth Wide Wavelength Bandwidth AR Coated, R<0.2% Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 266nm, 355nm, 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Air Spaced Zero-Order Waveplate Double Retardation Plates AR Coated,R<0.2% and Mounted High Damage Threshold Better Temperature Bandwidth Wide Wavelength Bandwidth Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/300 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 266nm, 355nm, 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Single Plate Ture Zero-order Waveplate 1.Broad Spectral Bandwidth 2.Wide Temperature .Bandwidth 3.Wide Angle Bandwidth 4.High Damage Threshold Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 1310nm, 1550nm   Cemented Ture Zero-Order Waveplate Cemented by Epoxy Wide Angle Acceptance Better Temperature Bandwidth Wide Wavelength Bandwidth   Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Cemented Achromatic: Achromatic waveplate is similar to Zero-order waveplate except that the two plates are made from different materials, such as crystal quartz and magnesium fluoride. Since the dispersion of the birefringence can be different for the two materials, it is possible to specify the retardation values at a wavelength range. Material: Optical grade Crystal Quartz and MgF2 Dimension Tolerance: +0.0, -0.2mm Wavefront Distortion: < l/ 8@633nm Retardation Tolerance: <l/ 100 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavele...
Weiterlesen
frequenzverdoppelung lbo kristall lbo Kristall
lbo Kristall
lbo (Lithiumtriborat oder lib3o5) ist ein sehr nützliches nichtlineares optisches Kristallmaterial, insbesondere für die Verwendung von hochintensiver Laserstrahlung, Intracavity-Shg-Thg, Deep-Uv-Sfg und Opo-Anwendungen.
Weiterlesen
yb: yag Kristall yb: yag Kristall
yb: yag Kristall
yb: yag ist eines der vielversprechendsten laseraktiven Materialien und eignet sich besser zum Diodenpumpen als die herkömmlichen nd-dotierten Systeme. Verglichen mit dem verwendeten nd: yag-Kristall hat yb: yag-Kristall eine viel größere Absorptionsbandbreite, um die Wärmemanagementanforderungen für Diodenlaser zu reduzieren, eine längere Lebensdauer auf oberer Laserebene und eine drei- bis viermal niedrigere Wärmebelastung pro Pumpleistungseinheit.
Weiterlesen
Wollaston-Polarisator Optischer Wollaston-Polarisator mit hoher Leistung
Optischer Wollaston-Polarisator mit hoher Leistung
Der Wollaston-Polarisator besteht aus Prismen aus Doppelbrechungsmaterial, die miteinander verklebt sind. Der gewöhnliche Strahl in der ersten Hälfte des Prismas wird der außergewöhnliche Strahl in der zweiten Hälfte. Der polarisierende Wollaston-Strahlteiler hat ungefähr die doppelte Abweichung für den Rochon-Polarisator.
Weiterlesen
eine Nachricht schicken
Wenn Sie Fragen oder Anregungen haben, senden Sie uns bitte eine Nachricht, wir werden Ihnen so schnell wie möglich antworten!
Get In Touch
  • Tel : +86-591-22857792
  • Email : sales@100optics.com
  • Hinzufügen : 3th Floor, Building 1, No 39 Jinlin Road, Cangshan District, Fuzhou Fujian,P.R.China.
Nachricht hinterlassen Willkommen bei Hunderts Optics
Wenn Sie Fragen oder Anregungen haben, senden Sie uns bitte eine Nachricht, wir werden Ihnen so schnell wie möglich antworten!

Zuhause

Produkte

Nachrichten

Kontakt