Nonlinear LBO Crystal

überlegenes Infrarot-Material Saphir

Saphir ist ein hervorragendes optisches Material mit hervorragenden optischen, chemischen und physikalischen Eigenschaften.

Anfrage jetzt
Produkte Details

Saphir ist das härteste der Oxidkristalle und behält seine hohe Festigkeit bei hohen Temperaturen, verfügt über gute thermische Eigenschaften und eine hervorragende Transparenz. Es hat eine hohe Durchlässigkeit von 1,5 µm bis 6,0 µm im mittleren Infrarot. Andererseits ist es gegenüber üblichen Säuren und Alkalien bei Temperaturen bis zu 1000 ° C sowie gegenüber HF unter 300 ° C chemisch beständig. Diese Eigenschaften fördern den breiten Einsatz in feindlichen Umgebungen, in denen eine optische Übertragung im Bereich von Vakuum-Ultraviolett bis Nah-Infrarot erforderlich ist.


Physikalische und optische Eigenschaften:

Kristalltyp

Hexagonal

Gitterparameter

a = 4,75 Å, c = 12,97 Å

Übertragungsband

0,15–6 & mgr; m

Schmelzpunkt

2040

Wärmeleitfähigkeit

4 W / cm / l

Brechungsindex

1,623 bei 5 um

Spezifische Wärme

0,18 cal / g / l

Wärmeausdehnung

7,7 · 10 & supmin; & sup6; / l

Mohs Härte

9

Dichte

3,98 g / cm3

Spezifikationen:

Material

Saphir

Maßtoleranz

+0,0, -0,1 mm

Dickentoleranz

± 0,1 mm

Oberflächenqualität

40/20

Blende löschen

& gt; 90%

Ebenheit

λ/4@632.8nm

Parallelität

3'

Fase

& lt; 0,25 mm × 45 °

Glasur

Nach Kundenwunsch




verwandte Anwendungen
FZ-Wachstumsspiegel aus Silizium Infrarotreflektoren und Fenstermaterial Silizium (si)
Infrarotreflektoren und Fenstermaterial Silizium (si)
Silizium (si) wird durch Czochralski-Ziehtechniken (cz) gezüchtet und enthält etwas Sauerstoff, der eine Absorptionsbande bei 9 Mikrometern verursacht. Um dies zu vermeiden, kann das Material im Float-Zone-Verfahren (FZ) hergestellt werden.
Weiterlesen
ir Material ge Fenster für Hochleistungs-Infrarot-Imaging-Systeme Germanium
für Hochleistungs-Infrarot-Imaging-Systeme Germanium
Germanium (ge) ist das bevorzugte Linsen- und Fenstermaterial für Hochleistungsinfrarotabbildungssysteme im Wellenlängenbereich von 8–12 μm.
Weiterlesen
optische zns-fenster infrarotoptik cvd zns fenster für volle bandbreite von 0,4-12 um
infrarotoptik cvd zns fenster für volle bandbreite von 0,4-12 um
zns wird durch chemisches Aufdampfen (cvd) für Fenster, Kuppeln und Linsen für Wärmebildsysteme hergestellt.
Weiterlesen
Zinkselenidfenster Infrarotanwendungen znse für IR-Laser
Infrarotanwendungen znse für IR-Laser
Znse (Zinkselenid) ist das beliebteste Material für Infrarotanwendungen. es kann von 0,6 μm bis 20 μm übertragen.
Weiterlesen
ir Material ge Fenster für Hochleistungs-Infrarot-Imaging-Systeme Germanium
für Hochleistungs-Infrarot-Imaging-Systeme Germanium
Germanium (ge) ist das bevorzugte Linsen- und Fenstermaterial für Hochleistungsinfrarotabbildungssysteme im Wellenlängenbereich von 8–12 μm.
Weiterlesen
Farbglasfilter Farbglasfilter für Ihre Anpassung
Farbglasfilter für Ihre Anpassung
farbiger glasfilter ist weit verbreitet in den bereichen display, ccd, mikroskopie, photometrie, radiometrie, bildgebung, astronomie, instrumentierung, luft- und raumfahrt usw. wir können eine vielzahl von verschiedenen schott-, hoya- und chinesischen farbigen gläsern liefern, und Wellenlängenbereiche im nahen Infrarot.
Weiterlesen
optische zns-fenster infrarotoptik cvd zns fenster für volle bandbreite von 0,4-12 um
infrarotoptik cvd zns fenster für volle bandbreite von 0,4-12 um
zns wird durch chemisches Aufdampfen (cvd) für Fenster, Kuppeln und Linsen für Wärmebildsysteme hergestellt.
Weiterlesen
nd: Yag-Kristalle nd: Yag-Kristall
nd: Yag-Kristall
Nd: YAG (Neodym-dotiertes Yttrium-Aluminium-Granat; Nd: Y3Al5O12) ist ein Kristall, der als Lasermedium für Festkörperlaser verwendet wird. Der dreifach ionisierte Neodym-Dotierstoff ersetzt typischerweise Yttrium in der Kristallstruktur des Yttrium-Aluminium-Granats (YAG), da sie eine ähnliche Größe haben. Im Allgemeinen ist der kristalline Wirt mit etwa 1% Neodym in Atomprozent dotiert. Anwendungen: Nd: YAG absorbiert hauptsächlich in den Banden zwischen 730–760 nm und 790–820 nm. Bei niedrigen Stromdichten haben Krypton-Blitzlampen eine höhere Leistung in diesen Banden als die üblicheren Xenon-Lampen, die bei etwa 900 nm mehr Licht erzeugen. Erstere sind daher zum Pumpen von Nd: YAG-Lasern effizienter.
Weiterlesen
Waveplate
Waveplate
Waveplates (retardation plates or phase shifters) are made from materials which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine. In the case of an incident linearly polarized beam this is given by a=2pi*d(ne-no)/l (a-phase difference; d-thickness of waveplate; ne,no-refractive indices of extraordinary and ordinary rays respectively; l-wavelength). At any specific wavelength the phase difference is governed by the thickness of the retarder. Transmission range:330nm-2100nm Thermal Expansion Coefficient:7.5x10-6/K .Density:2.51g/cm3  Half Waveplate The thickness of a half waveplate is such that the phase difference is l/2-wavelength (true-zero order) or some multiple of l/2-wavelength (multiple order).  A linearly polarized beam incident on a half waveplate emerges as a linearly polarized beam but rotates such that its angle to the optical axis is twice that of the incident beam. Therefore, half waveplates can be used as continuously adjustable polarization rotators. Half waveplates are used in rotating the plane of polarization, electro-optic modulation and as a variable ratio beamsplitter when used in conjunction with a polarization cube. Quarter Waveplate The thickness of the quarter waveplate is such that the phase difference is l/4 wavelength (true-zero order) or some multiple of l/4 wavelength (multiple order). If the angle q (between the electric field vector of the incident linearly polarized beam and the retarder principal plane) of the quarter waveplate is 45, the emergent beam is circularly polarized. When a quarter waveplate is double passed, i.e. by mirror reflection, it acts as a half waveplate and rotates the plane of polarization to a certain angle. Quarter waveplates are used in creating circular polarization from linear or linear polarization from circular, ellipsometry, optical pumping, suppressing unwanted reflection and optical isolation. Optically Contacted Zero-Order Waveplate   • Optically Contacted • Thickness 1.5~2mm • Double Retardation Plates • Broad Spectral Bandwidth • Wide Temp. bandwidth Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/300 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Cemented Zero-Order Waveplate Cemented by Epoxy Better Temperature Bandwidth Wide Wavelength Bandwidth AR Coated, R<0.2% Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 266nm, 355nm, 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Air Spaced Zero-Order Waveplate Double Retardation Plates AR Coated,R<0.2% and Mounted High Damage Threshold Better Temperature Bandwidth Wide Wavelength Bandwidth Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/300 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 266nm, 355nm, 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Single Plate Ture Zero-order Waveplate 1.Broad Spectral Bandwidth 2.Wide Temperature .Bandwidth 3.Wide Angle Bandwidth 4.High Damage Threshold Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 1310nm, 1550nm   Cemented Ture Zero-Order Waveplate Cemented by Epoxy Wide Angle Acceptance Better Temperature Bandwidth Wide Wavelength Bandwidth   Specifications: Material: Optical grade Crystal Quartz Dimension Tolerance: +0.0,-0.2mm Wavefront Distortion: <l/8@633nm Retardation Tolerance: <l/500 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavelength Standard wavelength: 532nm, 632.8nm, 800nm, 850nm, 980nm, 1064nm, 1310nm, 1550nm Cemented Achromatic: Achromatic waveplate is similar to Zero-order waveplate except that the two plates are made from different materials, such as crystal quartz and magnesium fluoride. Since the dispersion of the birefringence can be different for the two materials, it is possible to specify the retardation values at a wavelength range. Material: Optical grade Crystal Quartz and MgF2 Dimension Tolerance: +0.0, -0.2mm Wavefront Distortion: < l/ 8@633nm Retardation Tolerance: <l/ 100 Surface Quality: 20/10 Scratch and Dig AR Coating: R<0.2% at center wavele...
Weiterlesen
Plankonvexlinsen Plankonvexlinsen für optische Systeme
Plankonvexlinsen für optische Systeme
Plankonvexlinsen weisen eine gekrümmte Schnittstelle und eine planare Schnittstelle auf. Dies sind zum Beispiel die Mikrolinsen, die sich auf einem Wafer befinden und auch in makroskopischen optischen Systemen anzutreffen sind.
Weiterlesen
doppelte konvexe Linsen Doppelkonvexlinsen mit positiver Brennweite
Doppelkonvexlinsen mit positiver Brennweite
Doppelkonvexlinsen werden auf beiden Seiten der Linse mit einer identischen konvexen Oberfläche hergestellt. Diese Art von Objektiven hat eine positive Brennweite und erzeugt sowohl echte als auch vitale Bilder.
Weiterlesen
doppelt konkave Linsen für divergierende doppelkonkave Linsen
für divergierende doppelkonkave Linsen
Doppelkonkavlinse ist die häufigste Form der Negativlinse. Negativlinsen eignen sich am besten zur Erzeugung von divergierendem Licht oder einem virtuellen Bild, bei dem das Eingangslicht konvergiert.
Weiterlesen
eine Nachricht schicken
Wenn Sie Fragen oder Anregungen haben, senden Sie uns bitte eine Nachricht, wir werden Ihnen so schnell wie möglich antworten!
Get In Touch
  • Tel : +86-591-22857792
  • Email : sales@100optics.com
  • Hinzufügen : 3th Floor, Building 1, No 39 Jinlin Road, Cangshan District, Fuzhou Fujian,P.R.China.
Nachricht hinterlassen Willkommen bei Hunderts Optics
Wenn Sie Fragen oder Anregungen haben, senden Sie uns bitte eine Nachricht, wir werden Ihnen so schnell wie möglich antworten!

Zuhause

Produkte

Nachrichten

Kontakt